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Abstract

The performance of deep Convolutional Neural Networks (CNN) has been
reaching or even exceeding the human level on large number of tasks. Some exam-
ples are image classification, Mastering Go game, speech understanding etc. How-
ever, their lack of decomposability into intuitive and understandable components
make them hard to interpret, i.e. no information is provided about what makes them
arrive at their prediction. We propose a technique to interpret CNN classification
task and justify the classification result with visual explanation and an associated
visual search in the training data. The model consists of two sub networks: a deep
recurrent neural network for generating textual justification and a deep convolu-
tional network for image analysis. This multimodal approach generates the textual
justification about the classification decision. To enable the verification of the tex-
tual justification, we use a visual search to extract similar contents from the training
set. We evaluate our strategy on a novel CUB data-set (fine grain classification of
bird images) with the “ground-truth” attributes. We make use of these attributes to
further strengthen the justification by providing the attributes present in the images.

Note: This work [13] has been submitted to CBMI 2019 as a conference pa-
per1.

1http://www.cbmi2019.org/

http://www.cbmi2019.org/
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Résumé

Les performances des réseaux de neurones convolutifs profonds (CNN) at-
teignent ou même dépassent maintenant le niveau humain pour un grand nombre
de tâches. Quelques exemples sont : la classification d’images, le jeu de Go, la
compréhension de la parole, etc. Cependant, leur manque de décomposabilité en
éléments intuitifs et compréhensibles les rend difficiles à interpréter, c’est-à-dire
qu’aucune information n’est fournie sur les moyens par lesquels ils parviennent
à effectuer leurs prédictions. Nous proposons une technique pour interpréter la
tâche de classification d’images par des réseaux CNN et pour justifier le résultat
de classification avec une explication visuelle et une recherche visuelle. Le mo-
dèle comprend deux sous-réseaux : un réseau de neurones récurrent pour générer
une justification textuelle et un réseau convolutif profond pour l’analyse d’images.
Cette approche multimodale génère la justification textuelle de la décision de clas-
sification. Pour permettre la vérification de la justification textuelle, nous utilisons
la recherche visuelle pour extraire des contenus similaires du jeu de données d’ap-
prentissage. Nous évaluons notre stratégie sur un nouvel ensemble de données
CUB (classification à grain fin d’images d’oiseaux) avec une “vérité terrain” sur
des attributs (couleur, forme ...). Nous utilisons ces attributs pour renforcer la jus-
tification en fournissant les attributs présents dans les images.
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1
Introduction

Deep learning is growing very fast and its one of the fast growing area in artificial intelli-
gence. It has been used in many fields extensively including real time object detection [40],
image recognition [22] and video classification [25]. It also attains good result in understand-
ing speeches and natural language processing e.g teaching machines to read [17], Generating
sequence [48], speech recognition [9] etc. It gains popularity in recent years when AlphoGo
beat the human champion in a game of Go [45]. Deep learning usually implemented as Con-
volutional Neural Network, Deep Belief Network, Recurrent Neural Network etc. One of the
problems of deep neural networks is considered as a black box. A neural network is a black
box in a sense that it can approximate any function, find the structure within data but it will not
give any intuition on the structure of the function being approximated.

The problem with the current methodologies is that, they are good for predicting accura-
cies but they do not have any mechanism to explain the decision. Model explainability and
Prediction accuracy are the two most important goals to keep in mind when developing deep
learning algorithms to solve real life problems. The Convolutional Neural Networks are known
to possess good prediction performance, but lack of sufficient model explainability.

Apart from predictive performance, explainability and transparency are essential character-
istics of a trustful model; however, even with the state of the art performance, neural networks
remain black-box models, where the inner decision mechanism cannot be easily understood by
human beings. The applications in specialised domains ( For example medicine and finance )
require sufficient explainability and without it, its application can be largely limited. For ex-
ample, In banking industry, a personal credit card scoring model should be accurate but also
convincing. The terminology "Explainable AI" advocated by the Defence Advanced Research
Projects Agency (DARPA) draws the public attention [11]. This problem is especially impor-
tant for risk-sensitive applications such as autonomous navigation, security, or clinical decision
support.

Due to lack of proper justification CNN are considered as black boxes. In order to open this
black box several approached are proposed for understanding the behaviour and decision of the
network. The goal is to explain the decision of classification decision taken by neural network.

1.1 What is Explainable AI?

Explainable AI refers to create a techniques which produce explainable models while maintain-
ing the prediction accuracy and enable humans to understand and trust the system. Currently



deep learning models are created but the decision process is vague and there is no formal way
to explain why it reached to the specific decision.

Figure 1.1: Current AI systems [11]

Fig. 1.1 shows the learning process where the function learned from the training data and
give the output with good prediction accuracy but it also raises some questions about the system
e.g.

• How did the system got succeed?

• When can I trust it?

• Why did you give the specific output?

• How do I correct the error? etc

These questions need to be answered if we want to make the system trustworthy.

Figure 1.2: DARPA vision of Explainable Models [11]
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The task to develop new deep learning system should have the ability to explain their deci-
sion and convey an understanding of how they reached the following decision. The strategy to
achieve that goal is to develop deep learning system that will produce more explainable modes.
The fig. 1.2 shows the process where the system provides an explanation to the user that justifies
its decision.

1.2 Why do we need to explain AI?
The importance of explaining decision to other people is an important characteristics of human
intelligence. This ability also need in social interaction e.g., a person who never reveals one’s
interaction and thought has been regarded as a “strange fellow", but it is also important in
educational scenario where students aim to comprehend the reasoning of their teachers [42].
Explanation of one’s decision also help in maintaining the trust relationship between two people
e.g., a physician explains their decision to his patient. [42] points out some aspects in favour of
explainability. Some of the important ones are given below.

1.2.1 Verification of the system

We mentioned above that one does not trust the system by default in many applications. For
example, in medical application the use of models needs to be verified and interpreted by
medical experts is an absolute necessity. [5] mentioned a use case where an AI system predict
the pneumonia risk of a person wrongly. This type of AI system will not help and reduce
the pneumonia related deaths but increase it. In short, model learns asthmatic patients with
heart problem have lower risk of dying of pneumonia than healthy persons. A physician will
recognise it immediately. The need for explainability to end user is essential and verification
of the system output is make the system trustable.

1.2.2 Improvement of the system

The most important factor in explainability AI is to understand it’s weakness. It is difficult
to find the weakness in black box models than on models which are interpretable. It is far
more easier to detect the bias in model or dataset if we know what model is doing and why it
arrives that prediction. It can be helpful when comparing the architecture of different models.
It is important to find why the model fails, so one can easily claim that the we understand the
models are doing (and why they fail), it will be easier to improve them.

1.2.3 Learning from the system

Today’s AI models are trained on millions of examples and observer the pattern in the data
where as humans who are only capable of learning with a small number of example or sometime
even one. When using explainable AI system we can extract the distill knowledge from AI
model to gain new insights. One of the finest example is AlphaGo, where AI system identifies
new strategies to play Go, which have been adapted by Professional Go player. Thus only
model which are explainable are useful as it can explain their decision why that system use the
strategy and also human can learn new tricks from the system.



These examples exhibit that explainability is important for academic interest but it also play
an important role in future AI system.

1.3 Research Questions
1. How Convolutional Neural Networks explain a classification decision to end user?

2. How can we increase the explainability while maintaining the accuracy?

1.4 Research Contribution
This research made the contribution in the field of neural network explainability. In this work,
We proposed a visual justification system, namely EVCA (for Explaining Visual Classification
using Attributes), which produces an explanation for the classification of one input image,
providing the respective class label and explaining why the predicted label is appropriate for
this image. We use the state of the art fine grained classification model to get the feature
vector and generate the textual justification of the classification result. We further strengthen
the justification system by providing the attributes which were present in the image and the
textual description and also the similar images from the training set.

1.5 Thesis Structure
This Chapter provided an overview of the explainability problem and its applications in real-
world. We provide an overview of our contributions. Further, the thesis contains the following
chapters:

• Chapter 2:Related Work: This chapter discuss current state-of-the-art methods for neu-
ral network explainability. The chapter gives a broad overview of techniques using Deep
Learning and the methods of explaining the decisions taken by neural network.

• Chapter 3:Methodology: This chapter proposed multimodal which uses CNN and RNN
to generate textual description and also predict the attributes with the similar images from
training set.

• Chapter 4:Results and Experiments: This chapter evaluate our approach on publicly
available data sets by detailed experimentation and compare our networks with state-of-
the-art techniques.

• Chapter 5:Conclusion and Future Work: The thesis ends with the discussion about the
pros and cons of our proposed techniques. Then we discuss the possible ways to improve
on current methods.

Over the last few years many different methods have been proposed by researchers to find
out the internal mechanism of deep learning models. For instance, One method justify the
decision of a model by training another deep neural network which comes up with explanations
as to why the model behaved in that particular way. Another technique has been presented to
probe the black-box models by trying to change the input intelligently and analysing the models
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response to it. There has been promising progress in this field, we present some technique in
chapter 2. Existing methods are limited and the objective to achieve explainable AI has a long
way to go, considering the variation and difficulty in problem scope.





2
Related Work

In this chapter, we will discuss what is explainble AI and why do we need to explain AI. We
also discuss the current state-of-the-art methods for deep explanations.

Over the last few year, Convolutional Neural Networks (CNN) enjoy the attention of the
research community due to a tremendous surge in performance. After the work of Krizhevsky
et al. [28] CNN becomes the first choice of researchers to solve computer vision problems.
With the use of CNN, we see great advancement in computer vision surpassing human abilities.
However there is no clear idea why CNN outperforms traditional computer vision techniques.
To open the black box of CNN, researchers have proposed several approaches to understand
what a network is learning, but it still proves to be a challenging task.

2.1 Deep Learning
Deep Learning is the branch of machine learning which can automatically learn and extract
the meaningful information from a significant amount of data. The main reason behind the
success of deep learning is its capability to learn features (filters) and classification boundaries
in an end-to-end process. Hence, it is very effective in learning the feature representations for
classification tasks and has achieved a lot of success in image classification by efficient use of
CNNs (Convolutional Neural Networks) in last ten years. Availability of large amounts of data
and high computational power has added to the success of deep learning by allowing models to
generalise better and faster.

2.1.1 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are the most popular and effective deep learning archi-
tecture for Image Classification. In 1998, Yann LeCun introduced the very first convolutional
neural network known as LeNet5 [30]. After that, no major success was reported for more
than a decade due to lack of data and computational resources. Then in 2012, Alex Krizhevsky
released AlexNet [28] which was a deeper and much wider version of the LeNet; it won an
ImageNet [6] competition by a large margin which leads to the rebirth of CNNs. The increase
in computational resources and datasets tempted researchers to model very deep architectures
like VGG16 [46], ResNet [14] and DenseNet [20].

The main advantage of CNNs compared to its predecessors is their ability to detect the
important features without human supervision. CNN relies on convolution and pooling oper-



Figure 2.1: Architecture of LeNet by LeCun et al [30]

ations; also performs parameter sharing hence they are computationally efficient compared to
Fully connected Neural Networks. For example, given many pictures of handwritten digits, the
CNN learns (see Fig. 2.1) the feature maps using the convolution and pooling operations. The
feature extraction process is followed by classification layers (fully connected layers) which
predict the probability of an image for each class.

Convolutional Layer

It is one of the core building block that does most of the heavy computation. The parameters of
convolutional layer consists of learnable filter or kernels. Each learnable filter convoluted with
width and height during the forward pass computing the 2D activation map by dot product the
input and the entries of the filter and whole filter is slide over the width and height of the input
volume. The weight vector which generates features map reduce the complexity of model.

Non-linearity Layer

In this layer, various activation functions have been applied on neurons which introduce the
non linearity which is desirable for multi-layer perceptron. The activation functions applied
are tanh, Sigmoid and ReLU. ReLu is most favourable because it is efficient and it train several
time faster than other functions [34].

Pooling Layer:

A pooling function replaces the output of net at a certain location with the summary or statistics
of the nearby outputs. Pooling layer take each feature map from the convolutional layer and
prepare a feature map using some function. There are many functions to be used in pooling
layer For example, average Pool, max pool, L2 norm pooling etc. In max-pooling, pooling unit
outputs the maximum activation of input region and in average poling, it outputs the average of
input region.
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Fully Connected Layer

In fully connected layer, each neuron in the previous layer connected to the every other neuron
in the current layer and generate the global semantic information. Number of connected layers
depends upon the architecture.

Regularisation

Regularisation is a technique which we uses to prevent from overfitting. Overfitting is a major
problem in neural networks which occurs when the model learn too much and it does not gener-
alise very well on training data. The best way to detect overfitting is to keep track of validation
accuracy as the network train. If the validation accuracy is not improving, we should stop the
training. The most common regularisation technique is weight decay or L2 regularisation. In
L2 regularisation we add an extra term to the cost function called regularisation term.

C =−1
n ∑

x j

[
y j lnaL

j +(1− y j) ln(1−aL
j )
]
+

λ

2n ∑
w

w2 (2.1)

The first part of the equation is cost function i.e cross entropy loss and the second term is
regularisation term. The effect of this term is to make the network learn from small weights
and minimise the cost function.

Dropout

Dropout is another technique to prevent overfitting. The idea is to drop the number of neurons
along with their connections randomly during training. This technique prevents from learning
too much [47]. This technique reduces the overfitting and gives major improvement in the
accuracy as compared to other regularisation technique.

2.1.2 Recurrent neural Network
Recurrent neural network (RNN) achieved state of the art result in sequence learning. RNN
are present since the 1980’s when Jordan [23] which is followed by the much simpler architec-
ture by Elman [8]. RNN came into limelight when Sutskever et al. [48] present an approach
to translate sentences between natural language. Although the most successful architecture for
sequence learning is Long Short Term Memory (LSTM) which were first introduced by Hochre-
iter and Schmidhuber [18] in 1997. They introduced a unit of computation called memory cell
that replaces the traditional nodes in the hidden layer of a network.

The goal of RNN is to take advantage of sequential information. RNN contains a memory
or state that captures the information at time step t. It can handle the sequential data of arbitrary
lengths in the input and output which make it suitable for multiple task. A simple one-layer
RNN is shown in fig. 2.2 which illustrate the computation.

h(t) = f (Wxx(t)+Whh(t−1)+bh) (2.2)

where as Wx is the weight matrix of input layer, Wh is the weight matrix of hidden layer and
bh is the bias parameter.



Figure 2.2: A simple RNN with one input, one output and one hidden unit.

Recurrent Neural Network are trained using BackPropogation through time [56]. Stochas-
tic Gradient Descent (SGD) is performed by BackProgpogation Through Time to update the
parameters of RNN. It will update the parameters by doing one forward and then backward
pass. One of the problem arises during the update of the parameters is Vanishing/Exploding
gradients. Vanishing Gradient cause when the values of gradient is too small or tend to have
zero value. Exploding gradient occur when when gradient increase exponentially through being
multiplied by number larger than one. Although this problem is being solved by [37] through
clipping the gradients to some maximum value.

Gradient =
old_gradient ∗ threshold
|old_gradients|

(2.3)

The idea of [19], Long-Short Term Memory (LSTM) found to be a good solution of for
the vanishing gradient problem. The main idea of LSTM unit is to have additional memory
gates which remember the values over arbitrary time intervals and also capture the long term
dependencies. The architecture of LSTM is depicted in fig. 2.3 and it contains three main gates
which help it to overcome the problem of vanishing gradient.

• Forget Gate: Indicate when the network should forget.

• Input Gate: Indicate if the input is important to remember.

• Output Gate: Indicate the output weight.

2.2 Explainable AI
The need for explaining and justifying automatically generated predictions has been discussed
in various contexts, beginning with experts system in 1970’s [44, 49]. It is particularly used
in high risk application such as medicine where Doctors argued that the justification system
should have the capability to justify decisions as the most highly desirable feature of a decision-
assisting system [50]. It is also essential in consumer-facing applications such as Recommender
Systems [16, 51] and context-Aware Applications [53, 31].

The terms explanations and justifications are utilised conversely, yet the particular is signif-
icant when considered from the perspective of non-expert. Explanation answer the questions
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Figure 2.3: Architecture of LSTM

about how we arrive at the prediction whereas justification explanation system answers about
the "why should we believe that the prediction in correct" [4]. Besides, explanation may not be
unique, namely, there could be many different explanations for the same classification task.

2.2.1 Different Type of Explanations
There are many different methods which have focused on explaining a image classification
decision.

Textual Sentence Explanation

Many models have been designed to explain the classification decision using various type of
textual information and generate a textual sentence explaining the decision. Textual explanation
is first used in [44]. In [15], they generated a textual justifications for a image given. The
proposed model focuses on the discriminating properties of the object. The model predicts the
class label and explains why the predicted label is appropriate for the image. [15] introduces
loss function based on reinforcement learning that learns to generate sentences that align with
image object.

Feature Visualisation

To understand Convolutional Neural Networks (CNNs), Zeiler & Fergus [58] was the first one
to make an effort in understanding what a CNN learns. Significant Computation power has



Figure 2.4: Feature Visualisation of CNN [58]

been used to generate the understanding in their method. Zhou et al.followed up on the same
task in [59] and showed that different layers of the convolutional neural network behave as un-
supervised object detectors using a technique called CAM (Class Activation Mapping). They
were able to generate heat maps that justify which parts of an input image were important
for CNN to assigning a label by using a global average pooling, and visualising the weighted
combination of the resulting feature maps at the pre-softmax layer. Different pooling layers
such as global max pooling in [35] and log sum-exp pooling in [39] are used to examine the
same method. Selvaraju et al. [43] present an efficient technique to generalise the Class Ac-
tivation Map, known as GradCAM, which fuses the class-conditional property of CAM with
existing pixel-space gradient visualisation techniques such as Deconvolution [58] to pinpoint
fine-grained details on the image.

Although these methods are efficient to justify the decision of Convolutional Neural Net-
work but we are still far from desired goal of interpretable deep models where users trust the
system. There is a need to develop algorithm which helps to interpret deep models and generate
explanations of the result which can be used in all domains. The main goal is develop a trust in
these system when integrating in our daily lives.

Visual Description

Visual Description is the description of visual content in an image. The visual description meth-
ods relies on visual concept in a scene (e.g object, verb, subject) before generating the a textual
description with either a sentence template [29, 10] or language model. Recent development in
the visual description has achieved state of the art result and it is capable of producing almost

12



Figure 2.5: Example of Visual Description from [54]

accurate description of the image. In [54], it present an generative model approach which uses
computer vision and Recurrent neural network to generate the captions of the images. Some
example of [54] are given in fig. 2.5.

Similarly, [7, 24] present a deep model which generates the textual description of images
and their regions. [24] also infers the latent alignment between the region of the image and
segment of sentence. This approach aligned parts of language and visual modalities through a
common multimodal embedding.

Figure 2.6: Example of Visual Description from [24]

Attention mechanism has been introduced recently in computer vision and natural language



processing. It was used in machine translation, visual question answering and image caption-
ing. [57] incorporate attention in its caption generated model to visualise what the model sees
when it generate the sentence. This novel work introduce the attention based image caption
generators which is trainable by back propagation method which uses soft deterministic atten-
tion mechanism and trainable by maximising the variational lower bound which uses a hard
attention mechanism [57]. The novel work shows “where|" and “what" the attention is focused
on by visualising. It shows the usefulness of attention in caption generation methods. We also
uses the soft attention in our CNN which calculate the weighted combination of features which
focus on the critical parts when performing a task. Attention Module have been used to crop
the key parts from the image. Another similar approach is presented by [27] for self driving
vehicles. They proposed a attention model which identifies the image regions that influence the
network’s output and also produce the textual explanation of models actions.

Figure 2.7: Example of Visual Description with attention from [57]

Hendricks et al. [15] proposes a technique that generates the textual description of images
which focuses on the discriminating properties of the object present in the image. The tech-
nique used the loss function which is based on sampling and reinforcement learning which
learns to generate sentences that realise a global sentence property. The target was to generate
explanation which are both class relevant and image relevant. The fig. 2.8 shows that the visual
explanation is far more elaborative than the definition and description. Hendricks et al. [2] ex-
pand their work by overcoming the limitation like, (the attribute generated may not be present
in the image) by introducing the phase critic model which refine the generated explanations
with flipped phrases which can be used as negative example during training.

Figure 2.8: The goal is to generate class relevance and image relevant description [15].
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Visual Question Answering

Previously, people tried to explain the deep model by using heat map, textual description etc.
but Park et al. [21] proposed a multimodal method to explain the deep model classification in
the context of visual question answering. They created a new dataset to evaluate this task and
use a model which can provide textual rationale generation and heat map as shown in fig. 2.9.

Figure 2.9: Left: Activity Recognition Tasks (ACT-X) RESULT: For each image PJ-X model
provides an answer and justification and points to evidence for that justification. Right: Visual
Question Answering (VQA-X) RESULT: For each image PJ-X model provides an answer and
justification and points to evidence for that justification [21].

Park et al. [21] present two dataset for textual justification and visual justification of a CNN
classification task. The first one is for activity recognition tasks (ACT-X) and the second one is
for visual question answering (VQA-X). This multimodal is able to point the visual evidence
with the textual justification. For Example for a question “Is this a zoo?" the attention focuses
on the field in one case and on the fence in another.

2.3 Fine Grained Classification
Deep learning have achieved state of the art result in classification task but also have significant
improvement on fine grained classification task. The fine grained classification are categories
that are different but share a common part structure. For example the dog breed classification
as shown in fig 2.10 where both dogs are Terrier but one is Norfolk terrier and the other is Cairn



Terrier. For fine grained classification, normal deep classification model do not work well like
VGG16, VGG19, ResNet etc.

Figure 2.10: Left: Norfolk Terrier, Right: Cairn Terrier.

[33] proposed a bilinear model which performed classification on fine grained CUB dataset
and gain very good result. Similarly, [38] proposed OPAM which localise object and discrim-
inative parts for fine grained classification. [12] presented the attribute aware attention model
for fine grained classification and representation learning which learns both local attributes and
global property simultaneously for person re-identification. We took advantage of this tech-
nique and used it in our proposed method to get the fine grained features.
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3
Methodology

In this chapter, we propose an approach which aims to provide the explanation which describe
the visual content present in the image and explain why that image belongs to a unique category.
We also justify the result by exploiting the training set. We build understandability for non-
experts by exhibit images related to the query image or more precisely images affiliated to
objects in query image.This chapter is divided into following sections:

• Our Proposal: In section 3.1 we discuss the limitations of previous methods and propose
a new method which can overcome these issues.

• CNN Architecture: The architecture of Convolutional Neural Network (CNNs) used to
perform classification and for justification.

• RNN Architecture: In this section, we discuss about the RNN architecture to generate
the description.

• Visual Search: In this section, we discuss about the visual search used to retrieve images
from the training set.

• Conclusion: Finally the chapter concluded in section 3.7 by providing an overview about
proposal.

The goal is to have justification for experts and non-experts to understand the result obtained
from Convolutional neural network and justify the decision made by Convolutional neural net-
work. Before discussing the proposed solution, we want to discussed some approaches which
we tried. To justify the decision of a neural network, instead of using captions for object de-
scription, we thought of creating a class relevance caption. But there are limitations of class
relevance explanation.

• The class relevance explanation are for each class. The images given in bird dataset
are not the reflection of that explanation because Male and female birds have different
colours body and features. There are some images of child bird which are totally differ-
ent.

• Another problem is the textual data is very small, we have one sentence for around 80 to
90 images, and that single sentence didn’t represent the true form of the image.



Another approach is the generate a heat map of the objects attribute which make the object
unique. The CUB dataset have bird in every image and the colour of bird and the different
types of bill make it separate from one another. The heat map just point out the region of the
bird like bill, wings, crown etc. but not provide the colour and type of the bill which will make
us think to go for the description of image with attributes.

3.1 Our Proposal

We build a visual explanation model which produces an explanation with the respective class
label and explain why the predicted label is appropriate for the picture. We condition language
generation on the features produce by the fine grained classifier. Other captioning methods
relies on visual features generated from a network pre-trained on ImageNet. Our model include
convolutional feature encoder which generate strong image features. The sequence of words
are generated by LSTM. We justify our result also by using visual search. By using the image
features, we search for the relevant images in the training set and retrieve top K relevant results
using pairwise distance as a similarity measure. Our objective behind proposing this approach
is two fold: Justify classification decision using the textual sentence and also justify it by
retrieving relevant images from the training set. We start by introducing CNN architecture for
fine grained classification followed by RNN architecture and visual search.

3.2 Model Architecture

In our approach we attempt to learn distinctive features from the dataset as the dataset is fine
grained, it is very complex to learn distinctive feature between different categories. This is the
reason, no popular deep classifier like vgg16, ResNet worked here. [12] proposed a model for
fine grained representation learning. We are extending this network to get the features and use
it for classification and generate sentences. The fine grained CNN contain 2 branches in the

Figure 3.1: The overall architecture
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network extracting category features and attribute features separately then using attribute atten-
tion and category attention module help one another to select category features and attributes
features which can identify the category more accurately as it selected the distinctive features.
The model has been shown in fig 3.1.

3.2.1 Convolutional Feature Encoder
Attributes provide rich information to learn the correlation between categories. Attributes de-
scribe the high level properties which are discriminative for the objects by combining local and
global features [12].

Shared CNN:

The shared CNN can be VGG16, VGG19, ResNet etc. We get the features from last pooling
layer as we remove the final fully connected layer. Let suppose we are using ResNet-50, Given
an image of size 224× 224× 3, the output after the last pooling layer is in the dimension
2048×7×7. This feature map is shared by all the subsequent branches [12]. The shared CNN
is pretrained on ImageNet dataset.

Category Branch:

The category branch will get the feature map from shared CNN with dimension 2048× 7× 7
and after the convolution layer with dimension 2048× 1× 1 kernels, the shared features are
modified to category-related feature map in the dimension of d×h×w. Every local region of
the image corresponds to d-dimensional vector in the feature map. If we take ResNet-50, whose
feature map shared by the shared CNN is 2048×7×7, we obtain L = 49 local features vector,
represented by V = [v1,v2, ...,vL] where v1 ∈ R, l = 1,2, ...,L. We get the category embedding
v(category) ∈ R after the global average pooling. The prediction is by after the fully connected
layer. The softmax activation is used with the cross-entropy loss for training.

p̂(category) = so f tmax(W (c)v(category))+b(category) (3.1)

L (category) =
C(category)

∑
j=1

p(category)
j log p̂(category)

j (3.2)

p̂(category) is the probability predicted by category branch, W (c) ∈ RC(category) are the bias
vector and weight matrix of the last fully connected layer, and C(category) is the number of
categories. t is the ground truth category label, so that p(category)

j 6=t = 0 for all j and p(category)
t = 1.

The learned category embedding v(category) contains global information for image classification.

Attribute Branch:

For attribute branch, a shared features from shared CNN feed into convolutional layer with
d2048×1×1 kernels and a pooling layer to obtain attributes embedding vector a(k) ∈ Rd for
every attribute. There are multiple attributes for a single category, so we used sigmoid for
attribute classification.

p̂k = sigmoid(W (k)a(k)+b(k)) (3.3)



L (category) =−
C(k)

∑
j=1

p(k)j log p̂(k)j (3.4)

where W (k) ∈ RC(K)× ,b(k) ∈ RC(K)
are the bias vector and weight matrix and C(k) is the

number of kth attributes. p̂(k) is the predicted probability and p(k)j is the target probability. t

is the target attribute label, so that p(k)=1
t and p(k)j = 0 for all j 6= t. The loss function will

force the kth attribute embedding a(k) paying more attention to the regions related to the kth

attribute [12].

Attribute Attention:

The attribute attention module takes the features map generated by category branch and K
attribute embedding from attribute branch as input, and produces attention map which helps to
select the local regions involved with the attributes rather than background relevant part. The
kth attribute attention weights are given below:

m(k) = σV T a(k) (3.5)

where σ(x) =
1

1+ e−x is sigmoid function. The generated attention mask m(k) ∈ RL shows

the correlations between the L local regions and the K-th attribute. There are K attributes, so
we get the K attention maps. The values in the resulting attention map m(region) ∈ RL are high
in selected regions and low in other regions [12]. The local region features are multiplied by
the attention weights and summed to produce the category representation f (region) ∈ Rd ,

f (region) =
1
L

V (region)
m (3.6)

Category Attention:

The category attention model is similar to attribute attention. With the K attribute embeddings
A = [a(1), ...,a(K)] and the category embedding v(category), the category attention weights are
computed as,

s(attr) = σ(ATV(category)) (3.7)

3.2.2 Recurrent Neural Network
Recurrent Neural Network is used to generate the textual description of the image. The fea-
tures provided by the CNN are passed to the two stacked LSTM which generates sentence
conditioned on visual features. Both image features and previous generated word are provided
as inputs to the sequence model at each time step. This helps model to learn the dynamics for
the time varying output sequence, natural language [7].

The second LSTM receives the image features generated by our fine grained CNN and the
output of first LSTM and outputs the probability distribution p(wt) over the next word. One
hot vector has been used to encode the input words. Vectors y ∈ Rk with a single non-zero
component yi = 1 denoting the ith word in the vocabulary and K is the number of words in the
vocabulary. In addition, model also receives the "Start-Of-Sentence" token which is taken as y0
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Figure 3.2: RNN Model

with the previous word at time step(t=0). These one hot vector are projected to an embedding
space with dimension de by multiplying Weyt with a learned parameter matrix We ∈ Rde×K .
We obtained the column of matrix by multiplying matrix vector with one hot vector which is
correspond to the index of the single non zero component of one-hot vector. K words can be
mapped to We which can be thought as a lookup table in the vocabulary to a de dimensional
vector.

The fine grained features representation φv(x) of the image x is the input to the sequence
model- a stack of 2 LSTMs - by concatenating it at each time step with the previous word
Weyt−1 and fed it to the first LSTM of the stack and the hidden state h(L)t output (where L=1)
from LSTM 1 and fed into LSTM 2. The output produced by the second LSTM are the inputs
of the learned linear prediction layer with a softmax producing a distribution P(yt |y1:t−1,φv(x))
over the words yt in the models vocabulary. The <EOS> representing the End Of Sentence is
also including which permits the model to predict caption of different lengths. During training
time the previous input word y1:t−1 at time t are from the ground truth. But for prediction of
caption, the input is a sample from the model predicted distribution at a previous time step and
the generation continues until an "End-Of-Sentence" token is generated.

Without any explicit language modeling or impositions on the structure of the generated
captions, the described system learns mappings from images input as pixel intensity values to
natural language descriptions that are often semantically descriptive and grammatically cor-
rect [7].

Our model is as shown in Fig. 3.3 explains how a classification decision is made (i) by gen-
erating the textual description and explanation, (ii) by predicting the attributes for the specific
class which are also present in the textual description and (iii) by retrieving the similar content
from the training set to justify what has triggered the particular decision, e.g., “This is (Object
Classified) because (Justification)". As we summarise in Fig 3.3, our model involves four parts:
(1) a category classifier which predicts the class i.e Indigo Bunting shown in Fig. 3.3, which
uses the fine grained CNN architecture to extract features from images; (2) a textual explana-
tion generator, which generates textual explanation and description about the image content i.e
It has blue belly and ...; (3) a visual search, which uses the feature vector from the fine grained
classifier and retrieve the top K relevant results from the training set as shown in Fig. 3.3; (4)
a attribute classifier, which gives the attributes present in the textual justification and in im-



It has Blue belly and

This is Indigo Bunting Because

has_bill_shape::cone, 
has_wing_color::blue, 
has_upperparts_color::blue etc.

Attributes:

Training Set
Feature Extractor Using 

Fine Grained CNN
Pairwise Distance 

Concat

Figure 3.3: EVCA generates visual explanation with classification category and also with list
of attributes associated with the image. Additionally, it extracts the similar images from the
training set using pairwise distance. The images retrieved also contain the attributes. These
two parts justify the classification decision.

ages retrieve by visual search like has_bill_shape::cone, has_wing_colour::blue etc as shown
in Fig. 3.3. We ensure that the final output of the system fulfil the criteria of justification of
CNN Classification decision.

3.2.3 Visual Search

Fine Grained CNN

Query Image: Cardinal

Training Set
Feature Extractor Using 

Fine Grained CNN

Pairwise 
Distance 

layer
(Similarity 
Measure)

Cardinal

Cardinal

Cardinal

Cardinal

Figure 3.4: The Visual Search uses the Fine Grained CNN to extract image features and to
compute pairwise distances with images of the training set.

Searching is one of the humans fundamental activity. Human do visual search as part of
there every day activities. In order to achieve justifiable results we took inspiration from human
vision. We exhibit images related to the input image retrieved from database (Training Set) to
achieve our goal. Visual search uses an image as a query and tries to identify the similar image.
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The fine grained CNN is used to extract the features from the input image and retrieves the top
K relevant results using pairwise distance as a similarity measure. The Pairwise Distance pd is
a classical P-norm distance and computed as follows:

dp(x,y) =

(
n

∑
i=1
|xi− yi|p

) 1
p

(3.8)

where x represents the n-dimensional query image vector and y represents the feature vector of
an image from training set. If high distance is observed that means images under observation
are dissimilar and if small distance is observed then the images under observation are highly
likely have similar context.

3.3 Conclusion
In this chapter we proposed a technique to justify the classification decision. The details of our
proposed methods are three fold:

• Generate the textual description of the classification decision which justifies the decision
by mentioning the attributes present in the bird image.

• Visual search, which retrieves the K images from the training set which contain the at-
tributes mentioned in the textual description and also similar to the query image which
justifies the classification decision.

• Predicting the attributes which are present in the textual description as well as in the
images retrieve from training set(visual search) and also in the query image.





4
Experiment and Result

In this chapter we provide the details of the experiments performed to evaluate our methods
i.e. Textual justification and visual search for justifying the classification decision and compare
them with the existing approaches.

4.1 Experimental Setup
The network architecture is an important aspect of deep neural networks to achieve good per-
formance. Many network architecture like VGG16 [46], ResNet [14] and DenseNet [20] have
been proposed that perform really well on image classification. We use a Residual Network, or
ResNet-50 as a shared CNN for our neural network architecture because it avoids the problem
of vanishing gradients in the simplest way possible. The ResNet-50 architecture gives us a
good balance between efficiency and accuracy.

4.1.1 Dataset

In our study, we used well-known Caltech UCSD Birds 200-2011 (CUB) dataset [55]. CUB
dataset contains 200 classes of North American birds species and 11,788 images in total. The
dataset also comes with attributes for every bird. There are total of 312 attributes for every
category of attributes like, bill shape, bill colour, bill length, eye colour etc. Some examples of
attributes are given below:

• has_bill_shape::curved_(up_or_down)

• has_bill_shape::cone

• has_bill_shape::hooked

• has_wing_colour::blue

• has_wing_colour::brown

• has_wing_colour::black

• has_wing_colour::purple



Figure 4.1: Some Example of bird in the dataset.
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We choose CUB dataset because it provides the attributes of every bird class and also there is
an extension of dataset which has been done by [41], where they collected 5 sentences for each
image. These sentences describe the content of the image, e.g., “This is a bird" but also give
detailed description of the bird by mentioning their attributes e.g., “it has cone shaped beak, red
body and a grey wing." We selected this image-sentence dataset because every image is belong
to a certain class and therefore sentences and as well as images are associated with a single
label. The sentence also contains the features of the bird present in the image which make this
dataset unique for the visual justification task. The sentence collected in [41] were not collected
for the visual explanation task that is why it does not describe why the image belongs to certain
class but a descriptive detail about each bird class [15].

4.1.2 Metrics

Measuring the performance of explainability is not an easy task especially with the lack human
expertise. Human expertise is expensive and require a huge amount of time. The recent studies
suggest and recommend to use metrics which are also used to measure the performance of
image captioning like METEOR [3], Rouge [32], Bleu [36] and CIDEr [52] for the explanation
of model.

BLEU

BLUE is an acronym of Bilingual Evaluation Understudy is one of the first metric which is
used for measuring the similarity between two sentences. BLEU tells how good is our pre-
dicted caption as compare to the provided 5 reference captions. BLEU metric has been used
by machine translating system and then adopted by image captioning since both system are
comparing sentences from the perspective of generated sequences and the BLEU metric try to
evaluate the system generated sequence w.r.t reference sentence.

ROUGE

ROUGE was first proposed for the text summarisation system. The evaluation metric evaluate
the score by comparing the word pairs, word sequences and n-grams. Rouge favours long
sentences because it relies highly on recall.

METEOR

METEOR is another sentence evaluation metric which is defined as the harmonic mean of pre-
cision and recall of uni-gram matches between sentences. METEOR is computed by matching
words in generated and reference sentences and it also make use of paraphrase and synonyms
matching. METEOR addresses several deficiencies of BLEU such as recall evaluation and the
lack of explicit word matching. n-gram based measures work reasonably well when there is
a significant overlap between reference and candidate sentences; however they fail to spot se-
mantic similarity when the common words are scarce. METEOR handles this issue to some
extent using WordNet-based synonym matching [26].



CIDEr

CIDEr calculate the resemblance between a generated image description ci and a set of ref-
erence sentences Si = si1, ...,sim by counting common n-grams which are TF-IDF weighted.
CIDEr is especially designed for image captioning systems. The metric rewards sentences for
correctly including n-grams which are uncommon in the reference sentences.

4.1.3 Implementation

The image features are collected from the last layer of the fine grained CNN. One hot vectors
are used to represent input sentences at each time step and learn a 1000-dimensional embedding
before inputting each word into the 1000-dimensional LSTM. We use TensorFlow [1] for our
experiments. We reported all the results using CUB standard test set. We train our model with
batch size of 64 for 150 epochs. Adam is used as an optimiser with cross-entropy loss. The
starting learning rate was 0.001. The Euclidean distance is used to compare pairs of images, so
p = 1 in equation 3.8.

Figure 4.2: Exhibits images retrieved using visual search.

4.2 Results
To justify a classification result, we generate the text from our model with category label and
attributes labels. Furthermore, we demonstrate the justification by retrieving the similar images
from the training set. In the first experiment, we showed some result from the visual search and
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extracted some images from the training set, then we will shown the textual justification with
the overall result from our justification system.

4.2.1 Experiment with Visual Search

These experiments make use of training set to justify the decision to non expert. Results
obtained in this experiments exhibits visually perceivable understanding of why a particular
images was classified into a particular category. Aim of this experiment was to provide non-
experts with an additional information along with a class label to visually support the networks
final decision. Result shown in fig. 4.2 and 4.3 achieved by extracting the features from fine
grained CNN explained in 3. We exhibit images from training set as a supporting details to con-
vince a non-expert that the query image is correctly classified. This visual explanation supports
the classification decision of a CNN. Experiment results shown in 4.2 are the images retrieved
and classified correctly whereas 4.3 shows the results which are not retrieved correctly. If we
look at the wrongly retrieved images, e.g. Billed Grooved Ani, we see that it has almost similar
features like breast colour, wingbar colour etc. to the other categories Common Raven, Fish
Crow, American Crow etc. Although the attributes predicted beside that are correct as both
contain the similar features.

Figure 4.3: Exhibits images retrieved using visual search which are wrongly classified and
retrieved.

After observing retrieved images in fig 4.2 and 4.3, we conclude that exhibiting visually



Figure 4.4: Visual Explanation Generated by the EVCA justification system where attributes
are verified by ground-truth and predicted attributes and these attributes can be find in the
images extracted from training set.

perceivable images from training set provides an extra level of explanation to convince non-
experts to trust the classification decision of Convolutional Neural Networks.

4.2.2 Experiment for Textual Justification
Experiment were conducted using only the VGG16, VGG19 and ours Fine grained CNN. All
these models were trained on CUB dataset. The experiment is to compare the fig. 4.4 shows
some examples of the our justification system. The EVCA justification system predicts the class
label (“Wilson Warbler, American GoldFinch, Florida Jay") and then the justification conjunc-
tion (“because") is followed by a textual justification of the classification decision produced by
the model.

The first example in fig. 4.4 is of Wilson Warbler, where our justification system specifies
that the Wilson warbler contains a yellow belly and a yellow breast. We justify this decision
by looking at the ground-truth attributes and also the attributes predicted by our justification
system. The generated sentences contain the attributes essential to the specific image. We
also justify the classification decision by exploiting training set. The images retrieved from
the training set for a particular bird class also strengthen the understanding of why a particular
image is classified into a particular category. The right of fig. 4.4 presents 3 images from the
training set that belong to the same class. Similarly, for second and third examples of Fig. 4.4,
where the textual justification contains the attributes present in the query image, we see it
from the predicted attributes and the images retrieved from the the training set the prediction is
correct.

Despite our efforts, all the attributes are not always present correctly. In Fig. 4.5, let us
focus on the first example with a query image of a “Common Raven": the textual justification
mentions one incorrect attribute which is “long neck", and wrong images are extracted from the
training set. To explain this, we see that “Common Raven", “Fish Crow", “American Crow" and
“Common Crow" are all black, which makes these classes hard to distinguish. Similarly, for the
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Figure 4.5: Some negative examples predicted by the EVCA justification system, where it is
able to predict some attributes but those are also common in other classes.

second example, where the classifier predicted “white necked raven", the textual justification
only predicts the correct bird colour but does not mention the nape colour (which is white):
it mistaken the nape with the chest. This is wrong as White necked Raven is specified by the
white colour on its nape. Similarly, the images extracted from training set do not justifying
correctly the decision.

Table 4.1: Comparison of EVCA with baseline models of [15]

METEOR CIDEr

Definition [15] 27.9 43.8

Description [15] 27.7 42.0

Explanation-Label [15] 28.1 44.7

EVCA 28.2 45.3

Explanation [15] 29.2 56.7

We compare our system with the baseline models of [15] where they reported METEOR [3]
and CIDEr [52] score. In table 4.1, [15] trained definition model to generate sentence using only
image label as input and Description model is equivalent to LRCN [41], except the features used
are from fine grained classifier. Explanation-label is equivalent to Description but in addition
it also conditioned on class predictions and Explanation model depends on class condition
and uses reinforcement loss. Our result are below the Explanation model of [15] (last line of
table 4.1) but we do provide additional details for justification like attributes which are present
in the sentence and the similar images from the training set whereas [15] only provides the
textual justification. We present in table 4.2 the Bleu [36] and Rouge [32] scores, in a way to
show the interest of our EVCA model.

Fig. 4.6 shows some of the examples which are wrongly generated. The first query image
is “Painted Bunting" which is a colourful bird i.e. it contain multiple colour like blue or purple



Figure 4.6: Examples of textual Justification which were wrongly generated

head/crown, orange belly and breast and green wings but the generated sentence didn’t give or
generate much details about multiple colour. One of the reason is the training examples which
contain mix information about bird. It is similar for the query image which is “Nighthawk", it
is brown but with black and white spots which was not mentioned in the sentence. Similarly,
for third query image which is “American Redstart", contain black crown and back and white
belly but does not contain white breast. The feature which make it unique is “orange spot" in
wing-bar but the justification sentence does not contain this.

Table 4.2: Evaluation of EVCA with different Evaluation Metrics

Bleu_1 Bleu_2 Bleu_3 Bleu_4 ROUGE

EVCA 62.6 54.5 35.5 27.3 45.9
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5
Conclusion and Future Work

In this thesis we proposed and evaluated the methods to justify the classification decision. Our
experiments demonstrated that we justify the result with good accuracy. we proposed a naive
way by providing visually perceivable images to convince experts and non-experts to trust the
classification decision of Convolutional Neural Network. We conclude our work in this chapter
but providing a broad overview of our contributions and the limitations of our approach.

5.1 Conclusion

In this work, we presented an approach for both experts and non-experts to justify the classifi-
cation decision of Convolutional Neural Network. For experts, we generate visual justification
which contain attributes of the bird present in the image and these attributes also predicted
by classification model. For non-experts, we exhibit relevant images to the input image, re-
trieved from the training set, as an additional information to support the classification decision
of CNN. This additional visual information provides non-experts a naive sense to trust on the
system. Our proposal was tested on the CUB data set of birds images, and compared to other
state of the art approaches, on classical evaluation measures. The results obtained outperform
existing comparable works. We also provide additional information like attributes and similar
images from training set, which makes it unique. We obtain though some false results which
was mainly due to ambiguous appearance of birds in an image or very similar birds classes. Ex-
hibiting false results challenges the classification decision of Convolutional Neural Networks.
One issue with current system is the textual justification doesn’t mention the discriminative
feature of them image e.g., if the bird is spotted with black, it will predict the “white".

Our results show why classification decision of Convolutional Neural Networks was wrong
and helps non-experts to better understand the final decision. Our proposal provides enough
visually perceivable justification to convince both expert and non-experts to trust the classifica-
tion decision of Convolutional Neural Network.

5.2 Future Work

There are many ways to improve the textual justification for a classification task. We highlight
some issue and propose a way to overcome these problem and also some techniques which will
make the justification system more transparent.



• Lack of discriminative Properties: For instance, [15] uses reinforcement loss and class
labels to generate sentences which focuses on the discriminative properties of visible
object. We can incorporate this loss to further improve the system.

• HeatMap or Bounding Box: We have not employ any mechanism to focus on the region
in images. In future, we can take up to this consideration and generate a bounding box
and heatmap on the concerned region.
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