
Optimizing Deep Learning Parameters By Hyper heuristics

Evolution

A minor thesis submitted in partial fulfillment of the requirements for the degree of
Masters of Computer Science

Muneeb ul Hassan
School of Computer Science and Information Technology

Royal Melbourne Institute of Technology
Melbourne, Victoria, Australia

June 2, 2017

Declaration

This thesis contains work that has not been submitted previously, in whole or in part, for any
other academic award and is solely my original research, except where acknowledged.

This work has been carried out since Feb 2017, under the supervision of Andy Song.

Muneeb ul Hassan
School of Computer Science and Information Technology
Royal Melbourne Institute of Technology
June 2, 2017

i

Acknowledgements

I would like to take this opportunity to convey my special thanks to my supervisor Dr Andy
Song for his incredible support during the semester. His support is beyond an ordinary
supervision. Thanks to Nasser. R Sabar from Queensland university of Technology for helping
me in my thesis and for commenting on my work and his great suggestions, to my parents
for their continual support throughout my life for giving me endless support, motivation and
courage to overcome the hardships.

ii

Contents

1 Introduction 3

1.1 Research Questions . 3

1.2 Research Contribution . 4

1.3 Organization . 4

2 Background 5

2.1 Convolutional Neural Network . 7

2.1.1 Convolutional Layer . 7

2.1.2 Non-linearity Layer . 7

2.1.3 Pooling Layer: . 8

2.1.4 Fully Connected Layer . 8

2.1.5 Regularization . 8

2.1.6 Dropout . 8

2.1.7 Application Of Convolutional Neural Network 8

2.2 Keras and Tensorflow . 9

2.3 DataSet . 10

2.3.1 MNIST . 10

2.3.2 Noisy-MNIST(n-MNIST) . 10

2.3.3 Imagene Dataset . 12

2.4 Hyper-Heuristics Parameter Optimisation . 12

2.4.1 Low Level Heuristics and High Level Heuristics 13

2.4.2 Heuristic Formation . 13

2.4.3 Acceptance Criterion . 14

2.4.4 Heuristic Set . 14

iii

2.4.5 Initial Solution . 15

2.4.6 Objective Evaluation . 15

2.5 Aesthetic Evaluation . 15

3 Methodology 17

4 Experiments 20

4.1 Classification Experiment on MNIST And n-MNIST 22

4.2 Experiment for Manual Parameter Optimization 26

4.2.1 Experiment using Hyper Heuristics Approach 28

4.3 Classification With Imagene Dataset . 29

4.3.1 Experiment using Hyper Heuristics Approach 30

5 Conclusions and Future Work 31

A Testbed Configuration 32

iv

List of Figures

2.1 Example of neural network[1] . 6

2.2 Architecture of LeNet By Lecun et al[2] . 6

2.3 Computational graph created by Tensorflow[3] 10

2.4 Example of images from MNIST Dataset[4] 11

2.5 Example of images from Motion Blur Dataset. 11

2.6 Example of images from AWGN Dataset . 11

2.7 Example of images from Additive White AWGN Dataset. 11

2.8 Image treated as Good . 12

2.9 Image treated as Bad . 12

2.10 Framework for HyperHeuristics Optimisation[5] 13

4.1 Training loss with MNIST-awgn dataset . 22

4.2 Training loss with Motion Blur Dataset. 22

4.3 Training loss with AWGN Dataset . 22

4.4 Model loss with 16384 training samples . 23

4.5 Model loss with 8192 training samples. 23

4.6 Model loss with 4096 training samples . 24

4.7 Model loss with 2048 training samples. 24

4.8 Model loss with 1024 training samples . 24

4.9 Model loss with 512 training samples. 24

4.10 Model loss with 256 training samples . 24

4.11 Model loss with 128 training samples. 24

4.12 Model loss with 64 training samples . 25

4.13 Model loss with 32 training samples. 25

v

4.14 Model loss with 16 training samples . 25

4.15 Model loss with 8 training samples. 25

4.16 Model loss with 4 training samples . 25

4.17 Test Accuracy graph . 26

4.18 Time comparison . 28

4.19 Test accuracy with and without optimization 29

4.20 Training loss 10 epochs . 30

4.21 Training loss 100 epochs . 30

vi

List of Tables

3.1 Range of Hyper-Parameters . 19

4.1 Experiment on n-MNIST Data . 20

4.2 Experiment with training on MNIST and testing on n-MNIST 21

4.3 Experiment with training on n-MNIST and testing on MNIST 21

4.4 Experiment with n-MNIST with different combinations 21

4.5 Classify good and bad MNIST images . 22

4.6 Experiment with different tranining samples 23

4.7 Manual Search for Hyper-Parameters . 27

4.8 Experiment with different training size using Hyper Heuristic Approach . . . 28

4.9 Imagene data Experimental result . 29

4.10 Hyper Heuristic with Imagene Dataset . 30

1

Abstract

Deep Convolutional Neural Networks (CNN) has been successful is classification especially
image recognition and video processing tasks. However, the performance of a convolutional
neural networks is often highly dependent on the setting of the Hyper-Parameters. In this
work, we first formulate the deep learning model to classify the good quality images and bad
quality images without understanding the content of the image. The well known dataset
were used for evaluating the performance of the convolutional network. The Hyper-Heuristics
approach is used to tune the parameter of the convolutional network. Our experimental result
show that this hyper-heuristic approach can achieve high accuracy and it is suitable to tune
the hyper-Parameters. In addition, the result illustrate that this approach is optimal and
efficient and obtain better accuracy with all training data sizes.

Note: This Thesis has been submitted to SEAL17 Conference as a Conference paper.

2

Chapter 1

Introduction

Deep learning is growing very fast and its one of the fast growing area in artificial intelligence.
It has been used in many fields extensively including real time object detection[6], image
recognition[7] and video classification[8].It also attain good result in understanding speeches
and natural language processing e.g teaching machines to read[9], Generating sequence[10],
speech recognition[11] etc. It gain popularity in recent years when AlphoGo beat the human
champion in a game of Go[12]. Deep learning usually implemented as Convolutional Neural
Network, Deep Belief Network, Recurrent Neural Network etc. One of the problems of
deep neural networks is configuration of its parameters and it is sensitive to parameter
tuning. The parameters including batch size, optimizer, drop out rate, epochs, learning rate
etc. significantly impact the performance of our learning algorithm. In this study we first
investigate the deep learning model for image classification and we would like to introduce a
method to automatically tune the parameters to improve performance.

Image Classification has been studied of many decades and its one of the significant area in
computer vision.The task of image classification is to differentiate between images according
to their categories. Image classification usually have a set of targets e.g recognizing digits in
images[2], recognizing human faces[13], recognizing human action[14] and recognizing target
objects in images like car vs no car, book vs no book etc. However, in real application
classification of good vs bad images have been very important which can automatically find out
which image need improvement and which image needs to be rejected from image collection.
This would also help us to automatically generate aesthetic evaluation of images. The goal is
to utilizing deep learning to differentiate not just the set of target but evaluating the quality
of images i.e good quality image vs bad quality image.

1.1 Research Questions

1. How to formulate deep learning model to differentiate between good quality images and
bad quality images without understanding the content of the image?

2. How to minimize the training size and still achieve good accuracy in classifying good vs
bad images?

3

3. How can we use automated hyper-Parameter tuning method to achieve optimal classi-
fication results?

In order to answer the above questions we first investigate the previous strategies and talk
about how can we achieve the good accuracy with the given number of standard dataset and
once we achieve that, we reduce the dataset gradually and see the performance of the network
with the same parameters. We will try to find the hyper-Parameters through optimization
techniques which will increase the model accuracy with the low number of training size.

1.2 Research Contribution

This research made the contribution in the field of artificial intelligence and deep learning for
computer vision. In this work, we tried to make a model and classify images and will try to
increase the accuracy.Secondly, we try to reduce the training size and get the good accuracy.
We are using optimization technique to search the hyper parameters.

1.3 Organization

The rest of the thesis is organized as follows. Chapter 2 describe the background of the
material that is used in the thesis e. g we will give the overview of convolutional network and
its different layers, keras and tensorflow etc. In Chapter 3, we will talk about the methodology,
how we approach this problem and then chapter 4 will give our experiments results as well
as analysis of our result. In Chapter 5, we concluded our thesis and discuss some ideas about
future work.

4

Chapter 2

Background

Artificial neural networks are becoming increasingly popular in the machine learning field due
to their successful use in many different problem domains. This project focus on using neural
networks to try to solve image classification problem. These problems are a type of supervised
learning, where each image has an associated label to indicate a category that it belongs to.
The images are fed into the neural networks as input to train the network and then check the
accuracy on the images which are not fed into the networks i.e some new images.

The term ’good’ refers to the images which are clean from any noise and they are not blurred
whereas the term ’bad’ refers to the images which are blurred or images with some noise. The
task for selecting good images from a large database of pictures is hard and time consuming.
This problem is very interesting because of photographic and images communities are become
more common and to select images from their database which are not relatively free from any
noise is hard. Lets take an example of Instagram, one of the largest social networks of photo
community, which hosted a million of images and if we want to separate the good and bad
photos manually, its pretty hard and we want to attempt this task using computational
techniques. We are using deep learning techniques to classify the images. The convolutional
neural networks model is one of the best method to classify images. We try to determine
the degree of accuracy when classifying the images in such scenario and made an attempt to
increase the accuracy. To increase the accuracy, we need to modify the networks parameters
such as the learning rate and drop out rate, optimizer, number of epochs, batch size and
number of neurons in the dense layer.

Neural networks are biologically inspired programming model which can learn from observa-
tional data. Deep learning is the most successful and powerful technique for learning. Neural
network provides state of the art solution of many problems in video processing and image
recognition.

Before neural networks, hand crafted computer programs were written for image classification
but neural networks made it easy without explicitly define the image description. The idea
is to take the large number of images, known as training data and build a model which can
learn from those training data and we test the accuracy on test data.

In neural networks, the first layer is always the input layer and it the leftmost layer in the
network architecture. The rightmost layer is the output layer. The middle layer is called the

5

Hidden layer because the neurons in this layer are neither input nor outputs. The networks
may have number of hidden layers range from one to infinity, the higher the number of hidden
layers, the complex the architecture is.

Figure 2.1: Example of neural network[1]

Convolution Neural Network is a variant of multilayer perceptron. The Classical CNN is
LenNet which shown in figure 2.2. Current approaches for image classification make essential
use of convolutional neural network. It was first used by lecun et al.[2]. The major break-
through occur in 2012 when Alex et al. introduced AlexNet[15]. After that many subsequent
studies have applied deep learning for image recognition in which convolutional neural net-
work gives some astonishing results. For example, MNIST digit recognition task approaches
near human(<0.25%)[16].

Figure 2.2: Architecture of LeNet By Lecun et al[2]

Convolutional network is far better for classification task as compared to other approaches
and it is evident from number of results which came in the past few years. After AlexNet[15],
Zeiler et al introduce ZF-net which achieved state of the art result with the error rate of 11.5%
on ILSVRC 2013 dataset[17]. Google introduces the inception module in deep convolutional
network and achieve remarkable result with error rate of 6.7% on dataset of ILSVRC 2014[18].

6

It gives the idea that the CNN layers do not need to be stacked sequentially. Convolutional
neural networks are currently the most powerful tool for solving computer vision problem. So
that’s why CNN is the most significant approach to solve aesthetic judgment task.

In convolutional neural network, finding the right hyper-parameter is quite hard and it
require expertise and can be time consuming. Grid search, Bayesian Search and manual Search
have been used widely for hyper-parameter optimization but these technique are not optimal.
Hyper-Heuristics Approach is one of the approach which is used to on image reconstruction
benchmark. This approach is task independent.

2.1 Convolutional Neural Network

Neural network is a large collection of simple neural units. These neurons are connected with
each other and with different layers. One neuron take one input and the number of inputs
defined the number of neurons in the first layer. There are many types of neural network e.g
Convolutional neural network, recurrent neural network, Modular neural network etc.

Convolutional Neural networks are the type of supervised learning algorithms. Convolu-
tional neural networks are made up of different neurons with learnable biases and weights.
It is designed to process the data that comes in the form of multiple layers[19]. Each layer
consist of different number of neurons and each neuron receives several inputs, weighted sum
over them and pass it to activation function and deliver it to the output. Convolutional
networks transform the volume of activation function to another activation function through
differentiable function.

2.1.1 Convolutional Layer

It is one of the core building block that does most of the heavy computation. The parameters
of convolutional layer consists of learnable filter or kernels. Each learnable filter convoluted
with width and height during the forward pass computing the 2D activation map by dot
product the input and the entries of the filter and whole filter is slide over the width and
height of the input volume. The weight vector which generates features map reduce the
complexity of model.

2.1.2 Non-linearity Layer

In this layer, various activation functions have been applied on neurons which introduce the
non linearity which is desirable for multi-layer perceptron. The activation functions applied
are tanh, Sigmoid and ReLU. ReLu is most favourable because it is efficient and it train
several time faster than other fucntions[20].

7

2.1.3 Pooling Layer:

A pooling function replaces the output of net at a certain location with the summary or statis-
tics of the nearby outputs[21]. Pooling layer take each feature map from the convolutional
layer and prepare a feature map using some function. There are many functions to be used
in pooling layer For example, average Pool, max pool, L2 norm pooling etc. In max-pooling,
pooling unit outputs the maximum activation of input region and in average poling, it outputs
the average of input region.

2.1.4 Fully Connected Layer

In fully connected layer, each neuron in the previous layer connected to the every other neuron
in the current layer and generate the global semantic information. Number of connected layers
depends upon the architecture.

2.1.5 Regularization

Regularization is a technique which we uses to prevent from overfitting. Overfitting is a
major problem in neural networks which occurs when the model learn too much and it does
not generalize very well on training data. The best way to detect overfitting is to keep track
of validation accuracy as the network train. If the validation accuracy is not improving,
we should stop the training. The most common regularization technique is weight decay or
L2 regularization. In L2 regularization we add an extra term to the cost function called
regularization term.

C = − 1

n

∑
xj

[
yj ln aLj + (1− yj) ln(1− aLj)

]
+

λ

2n

∑
w

w2 (2.1)

The first part of the equation is cost function and the second term is regularization term.
The effect of this term is to make the network learn from small weights and minimize the cost
function.

2.1.6 Dropout

Dropout is another technique to prevent overfitting. The idea is to drop the number of
nuerons along with their connections randomly during training. This technique prevent from
learning too much[22]. This technique reduces the overfitting and give major improvement in
the accuracy as compared to other regularization technique.

2.1.7 Application Of Convolutional Neural Network

The application of convoloutional neural network are from broad range. In computer vision,
CNN is used for face recognition, scene labelling, image classification, action recognition and

8

human pose estimation. Face recognition constitutes a series of related problem e.g identifying
all the faces in the picture, focusing on each face despite bad lighting and identifying unique
features. In scene labelling, each object is labelled with the category it belong. Image
classification is also constitute of series of problem. It identify the content of the image
and labelled it with correct category. Human pose estimation is long standing problem in
computer vision. This problem was solved with traditional hand crafted features but deep
learning gave the better result in classifying human pose.

Convolutional Neural network provide the major breakthrough in the field of computer
vision but it is also did good with natural language processing. Speech is raw and to recognize
it is one of the important task in Natural Language Processing. Handling noise is one of the
main task in speech recognition and CNN did it successfully. Another important application
of NLP is text classification. [23] performs classification and extraction task using convolution
neural network and obtain good results.

CNN is better approach than other deep learning methods in application like computer vision
and natural language processing. CNN gives better result as compare to other methods
because of weight sharing and local connectivity.

2.2 Keras and Tensorflow

Keras is an open source high-level neural network API which is built on top of tensorflow, and
this was used to create and train neural networks in our experiment. Keras provide modularity
and extensibility. In keras, we define models with different standalone configurable modules
which can combine to form a neural network model. Keras is a high-level API which provides
the frontend. At the backend of keras, tensorflow was used.

Tensorflow is an open source software library developed by Google.[24]. It is a flexible data
flow-based programming paradigm. It creates a graph which describes how the data is flow
between operations that are to be performed. It is an interface to implement machine learning
algorithms[3]. Tensorflow is a directed graph which consist of nodes and it also maintain and
update the state of the node. Every node have zero or more input and zero or more outputs.
Values flow among the node to node and these values are arbitrary long arrays called tensors.
Tensorflow supports wide range of operations including element wise mathematical operation,
array operations, matrix operation, neural net building operations etc.

9

Figure 2.3: Computational graph created by Tensorflow[3]

The example of computational graph shown in figure 2.3, its a simple equation of rectified
Linear Unit(ReLu) in which the matrix of weight and input(x) are multiplied with the addition
of bias. Tensorflow create graph like this for each calculation and execute it in sessions.

2.3 DataSet

2.3.1 MNIST

In our study we used well known MNIST dataset[2] to classify good and bad images. The
MNIST dataset is a standardized dataset that is often used for bench-marking. The MNIST
dataset consists of images containing handwritten digits from 0 to 9, with each image being
a 28x28 gray scale image. The training set consist of 60000 of these images and the test set
contains 10000 images.

2.3.2 Noisy-MNIST(n-MNIST)

We also used another version of the MNIST dataset which is called noisy MNIST or n-
MNIST[25]. There are three version of noisy MNIST which are

1. MNIST with motion blur

2. MNIST with additive white Gaussian noise(awgn)

3. MNIST with AWGN and reduced contrast.

10

These datasets are the exact replicas of original MNIST but with additional noise. Each
image in these dataset are also 28x28 gray scale image with 60000 training examples and
10000 test examples. The labels in training and test datasets are one hot encoded i.e each
label is 1x10 vector.

Figure 2.4: Example of images from
MNIST Dataset[4]

Figure 2.5: Example of images from
Motion Blur Dataset.

Figure 2.6: Example of images from
AWGN Dataset

Figure 2.7: Example of images from
Additive White AWGN Dataset.

The MNIST with motion blur filter is created by imitating a motion of camera by 5 pixels
with an angle of 15 degrees which makes the filter a vector for horizontal and vertical motions.
The MNIST with AWGN is created by introducing additive white gaussian noise with signal
to noise ratio of 9.5. The MNIST with reduced contrast and AWGN is created by introducing
contrast range with AWGN with signal to noise ratio of 12 [25].

The MNIst and n-MNIST dataset contain images with 1 color channel. When selecting
the data for our training set, validation set and test set, we are not given any information
about how the sampling of these images was done. We select a random order to construct
our training data, validation data and test data. We took 20% for validation data from our
training set and the test data remain constant through out the experiments.

11

2.3.3 Imagene Dataset

Imagene[26] is an evolutionary art generating program which creates series of images with
shapes and patterns using genetic programming approach. These images have no semantic
content but have aesthetic appeal[27]. Each image have 500 x 500 dimensions. Both grayscale
and coloured images were provided but it was decided to use grayscale images with what was
previously used with MNIST. Half of the images have been modified by inserting random
noise square into the image at random location. An example images have been shown at
figure 2.8 and 2.9. The images with no noise inserted is one class and and images with noise
is another class.

Due to large image size (500 x 500), it is very difficult to process with current system
configuration as compared to MNIST data set(28 x28). The larger image size resulted in
memory issue, so to avoid this condition, we downsize all the images to 40 x 40.

Figure 2.8: Image treated as Good Figure 2.9: Image treated as Bad

The dataset consist of 95 images from each class giving 190 images in total. The 20% of
these used for testing out of 191 which are 39 images. The total of 151 is used for training
the model with the 20% used for validation.

2.4 Hyper-Heuristics Parameter Optimisation

The art of hyper heuristics optimisation is to find the heuristics methods to find the computa-
tionally hard search problems which combine machine learning techniques to select, combine,
generate often simpler heuristics. The hyper heuristics is a method for selecting and gener-
ating heuristics to solve search problems[28]. Hyper-heuristics has been successful in many
different fields[28][29][30][31][32].

Hyper-Heuristics begins from the initial solution which will generated randomly and then

12

improve the solution iteratively until the best solution is met. Hyper-heuristic divided into
two components

1. Low Level Heuristics

2. High level Heuristics

2.4.1 Low Level Heuristics and High Level Heuristics

The low level heuristics operate on the solution space. The quality of solution is being
evaluated by the objective function from the domain. Whereas high level heuristics operate
on the heuristic space. It will form the heuristics to improve the result and secondly it will also
determine whether to accept or reject the generated solution. This is called the Acceptance
Criterion.

Figure 2.10: Framework for HyperHeuristics Optimisation[5]

The figure 2.10 showed the main components of Hyper-Heuristics framework. We explained
each of the component in the following section.

2.4.2 Heuristic Formation

For heuristic formation, we need to collect heuristic from the pool of heuristics in the low
level component. The selection criteria used is Multi-Armed Bandit(MAB). MAB select the
heuristics on the basis of past record, it records all the performance of all heuristics. There
are two variables which keep record of the heuristics i.e empirical reward and confidence
level. The empirical reward portray the average rewards acquired by each heuristic. The
confidence level is the number of time the heuristic has been applied. The empirical reward
and confidence is higher the better[5].

13

2.4.3 Acceptance Criterion

Acceptance criterion belongs to the high level of framework and it is independent of task
domain. Acceptance Criterion decides whether to accept the generated solution which is
generated by applied heuristics. Monte Carlo acceptance criterion have been used to accept
the solution[31]. Monte Carlo acceptance criterion accepts the solution that improve the
objective function compared to the last solution that was accepted. The worse objective
function can also be accepted if the following condition is met[5].

R < exp(∆f) = exp(ft − ft−1) (2.2)

Where R is the random number between [0,1] and ∆f is the difference between objective
value at iteration t and t− 1.

2.4.4 Heuristic Set

There are several heuristics used to generate new solutions. Each heuristic subsumed various
characteristics in search and different search behaviours.

Parameterized Gaussian Mutation

Xi = Xi +N(0, σ2) (2.3)

where σ2 = 0.5 is the standard deviation[5]. The other heuristics are same but with different
σ value range from 0.2 to 0.4.

Differential Mutation

Xi = Xi + F × (X1i −X2i)∀i = 1...n (2.4)

Where Xi is the decision variable for a given solution and X1i is the best solution and F is
the scaling factor[5].

Arithmetic Crossover

Xi = λ×Xi + (1− λ)×X1i, ∀i = 1...N (2.5)

Where λ is random number with range 0 to 1. Xi is the current solution and X1i is the
current best solution[5].

14

2.4.5 Initial Solution

Initial solution is a set of CNN parameter that need to be tuned represented as 1D array.
Each parameter is randomnly generated. The random function is as follows:

xp = lp +Randp(0, 1)× (up − lp), p = 1...p (2.6)

Where p is the total number of parameters to be tuned. Randp returns a random number
within 0 and 1. lp and up are lower bound and upper bound respectively for that parameter[5].

2.4.6 Objective Evaluation

The objective evaluation function is used to measure the quality of solution. For simplicity
We used test accuracy.

2.5 Aesthetic Evaluation

In this section we give the overview of some methods that have been adopted to solve the
image aesthetic problem. Biologically speaking, a reasonable solution to this problem may
lead to better understanding of the human vision[33]. This task is basically performed by
human and human selects the images on their judgment.

Currently many researchers did this task by using a computational approach and machine
learning techniques. Previous study has shown that the features that are regarded as the
most important features in image aesthetic are colour[33], texture, composition, saturation
and hue[34]. The main task in aesthetic selection of images is the selection of features
and on what basis features are selected. Datta et. al. takes a data mining approach to
image evaluation[34]. From a set of photographs, features are selected based on machine
re-presentable heuristics that can be applied to photographs e.g. textual smoothness, golden
ratio and low depth of field[34]. They establish a significant correlation between various visual
properties of images and their aesthetics rating. They used 15 visual features which include
saturation, hue, exposure of light, colourfulness, rule of thirds, familiarity measure, wavelet
based texture, aspect ratio, region composition etc.[33]. The limitation of this method is
that they just used the heuristic features and some features relevant to photographic quality.
They may have ignored some important features which are significant for the classification of
images like converging lines and light source classification.

In [35],they found the distinguished factors that make the photo high quality, such as
simplicity, realism and basic photographic techniques. Simplicity is defined as when the
subject is separate from background. They separate these two things by using focus, color
contrast and lighting contrast. Realism photographic technique are integral part in assessing
the photo. It include blur, color palette, composition etc. The model used hand crafted
method, so this may not be so effective.

15

In[36], they proposed the features in terms of color presentation and spatial composition,
which includes color palette, layout/edge composition and global texture features and they
assist the image on that features. In[37],Marchesotti et al. proposed the use of generic image
descriptor. In [38][39], they manually grouped the images of same category(e.g plant, animal,
building etc.) and build an aesthetic model. In [38], they specifically work on the global/
regional feature of the image.

An attempt was made to solve this problem through machine learning. The approach was
to construct a binary classier using features by using a variety of classification algorithms[33].
The algorithms used to classify images are Sequential Minimal Optimization(SMO), Random
Forest, J48 and OneR. After that the most frequently selected features are the one that are
highly associated with aesthetic value. As they mentioned in their paper that 55 features are
not capturing many of the criteria used in making the judgment.

Many studies after that applied machine learning to photographic images to classify images
on the basis of their aesthetic value [40][34][41][42]. Another work used restricted boltzman
machine to find out the features in the images and classify high value and low value aesthetic
images[27].

In [43], an attempt was made to solve this problem by creating query dependent aesthetic
model for each image. They created five layers in which two are covolutional layers and three
are fully connected layers The task is to classify images into two classes i.e good and bad.
They used 19000 images to train their network which is downloaded from DPChallenge.com,
which is a social photo sharing website. In this method, for every given query, a model is built
to describe its unique aesthetic attributes. The key problem with this technique is the noise
in the query image i.e visually and semantically similar to query image. They also defined the
universal aesthetic model which stated as for the given images provided its aesthetic quality
and classify it as good and bad image. In universal aesthetic model, it is assumed that all
the images share the common aesthetic model.

16

Chapter 3

Methodology

This research is try to answer the three questions. Our investigation is also planned in three
components. The first part is try to determine the good convolutional network structure and
network to address the question one. Secondly, we studied the impact of the training size on
the classification performance. Third, we will study the automated optimization mechanism
to find the parameters that will increase the test accuracy. The series of steps we performed
are listed below:

1. Formulating two datasets, one representing good image i.e with no noise, the other
represent bad image i.e images with noise.

2. Train Convolutional neural network for classification task.

3. Compare the model accuracy of different dataset sizes.

4. Take average accuracy of different datasizes over 30 runs.

5. Trying to improve the accuracy of network provided small data size.

6. Analyze different combination of hyper-Parameters manually which increases the accu-
racy.

7. Analyze the combination of hyper-parameters using hyper heuristics framework.

We collected two different dataset, one is MNIST[2] and second is noisy-MNIST(n-MNIST)[25].
The n-MNIST is the noisy version of MNIST dataset. The n-MNIST dataset have been di-
vided into three different dataset which are MNIST with motion blur, MNIST with Additive
White Gaussian Noise and MNIST with Additive White Gaussian Noise with Reduced Con-
trast. All the datasets containing 60,000 training examples with 10,000 test examples. We
divided our dataset into two categories i.e good images which are MNIST dataset and bad im-
ages which are n-MNIST data. We give the new label to our dataset and ignore the previous
labels which are indicating the content of the images. First we randomly collect 60,000 images
from n-MNIST and we have 60,000 images in MNIST. We mix the both dataset MNIST and
n-MNIST and randomize it and select around 60,000 images for training. We fix the test size
which consist of 20,000 images. Test size remains same throughout the experiment.

17

Our network consist of two convolution2D layers, with the following MaxPooling2D layer
after the second convolution. Afterwards, the output of MaxPooling is flattened to 1D
and pass it through the fully connected dense layer. We introduce drop out layer after
the MaxPooling2D layer and after the dense layer for better generalization. ReLu(Rectified
Linear Unit) activation is used for all layers. The output of dense layer use the softmax
activation for probabilistic classification. The selected hyper-Parameters are listed below.
Later, we used optimization technique to find the suitable combination of hyper-Parameter
which gives the best accuracy.

1. The batch size represents the training examples being used simultaneously during one
iteration.

2. The number of Epochs represents the number of iteration over the entire data set.

3. The number of neurons in the fully connected layer.

4. Drop out probability

5. Learning Rate of an optimization algorithm

6. The rho factor

7. The epsilon factor

During the training, we split our training data into training and validation set. Validation
data consist of 20% of the training set. During training, we keep an eye on validation loss,as
it stops decreasing or start increasing we stop the training because of the overfitting of the
data. We used training and test accuracy to calculate how fit the model is. Training accuracy
is calculated as

Accuracy =

∑
TruePositive+

∑
TrueNegative

TotalnumberofImages
(3.1)

There are other ways to determine the model fit e.g ROC, F-measure, MSE etc. but
we are using accuracy for simplicity reasons because the data is quite balanced and we
have equal emphasizes on true and false. Train and test accuracy will be a good indicator
of model performance. The second research question is how the size impact the training
and test accuracy. It is well understood that when we have less training set, then the
computational requirement is less. So, it is more economical to train and also less training
set usually introduce the problem that the data is not representative enough. Therefore, the
training accuracy might not be good. So, it is a good balance between good performance vs
computational cost. Therefore, we try to find minimum less training examples which will give
us reasonable test performance. Therefore, we use logarithmic scale to reduce our dataset like
22, 23, 24 so on and so forth. We use this only for reduce our training data. We maintain the
test set same through out the experiment because it is going to be a true assessment of our
performance. Therefor, in our study all our experiments in terms of test are consistent. We
are using only test accuracy to report the performance because over training happens which

18

will leads to high training accuracy but low test accuracy. We emphasize that classification
performance has been our primary interest in classification. Our motivation for training and
analyzing models on different datasets sizes was, if there is some hyper-Parameters which
effects significantly on the model.

The range of every hyper-parameter are very important for hyper heuristics algorithm to
search in the specified space. In [44], they defined the the search space for different hyper
parameters. The range of the hyper-parameters used in our experiment are listed in table
3.1.

Hyper-parameter Range

Batch size [24 − 28]

Dropout rate after Pooling Layer [0− 0.8]

Number of Neurons1 [1− 100]

Epochs1 [1− 10]

Learning Rate [10−1.5 − 100.5]

rho [0.8− 0.999]

Epsilon [10−9 − 10−3]

Table 3.1: Range of Hyper-Parameters

Some of the hyper-parameter range are not defined in the [44]. We select the hyper-
parameters which are not define in [44] by conducting the extensive experiments with different
combinations and then come up with these ranges.

1Parameter Range not defined in [44]

19

Chapter 4

Experiments

In this section, we discuss the range of experiments we did and describe the results of these
experiments. The first experiment we conducted is on n-MNIST dataset. We ran the same
experiment on three different datasets and try to find the maximum accuracy.

1. mnist with motion blur referred as mnist-m-b

2. mnist with additive white gaussian noise(AWGN) referred as mnist-awgn

3. mnist with reduced contrast and AWGN referred as mnist-rc-awgn

The number of images for training are 48,000, validation data are 12,000 and 10,000 images
for test data. The experiment which we conducted to classify MNIST digits from 0 to 9 have
same architecture through out the experiment.

Datasets Optimizer Parameters Train Accuracies Test Accuracies Epochs

mnist-m-b adadelta lr-0.2 0.9730 0.9739 4

mnist-rc-awgn adadelta lr-0.2 0.9519 0.9272 4

mnist-awgn adadelta lr-0.2 0.9709 0.9554 4

Table 4.1: Experiment on n-MNIST Data

We did this experiment select the best optimization algorithm for our architecture and fix
it for out future use. We experiment with two mostly used optimizer Adam and Adadelta.
In [45], they mentioned the Adam and Adadelta provide the most suitable convergence. We
experiment with these two optimisers.

20

Datasets aptimizer Parameters Train Accuracies Test Accuracies Epochs

mnist-m-b adam lr-0.2 0.9828 0.9631 4

mnist-m-b adadelta lr-0.2 0.9732 0.9660 4

mnist-awgn adam lr-0.2 0.9810 0.7023 4

mnist-awgn adadelta lr-0.2 0.9737 0.7897 4

mnist-rc-awgn adam lr-0.2 0.9814 0.5287 4

mnist-rc-awgn adadelta lr-0.2 0.9740 0.66.76 4

Table 4.2: Experiment with training on MNIST and testing on n-MNIST

It is evident that the ”adadelta” gives the better accuracy as compare to ”adam”. We did
another experiment in which we train the model on noisy mnist and check the accuracy on
original mnist data. The purpose of this experiment is to see, if we get the good accuracy
after tarining with noisy MNIST

Datasets Optimiser Parameters Train Accuracies Test Accuracies Epochs

mnist-m-b Adadelta lr-0.2 0.9736 0.9714 4

mnist-awgn Adadelta lr-0.2 0.9699 0.9706 4

mnist-rc-awgn Adadelta lr-0.2 0.9519 0.9601 4

Table 4.3: Experiment with training on n-MNIST and testing on MNIST

We are trying different combinations of noisy MNIST data like training on one noisy MNIST
data and testing on other. The adadelta is used as an optimiser with 4 epochs.

Training Dataset Testing Dataset Parameters Train Accuracies Test Accuracies

mnist-m-b mnist-awgn lr-0.2 0.9733 0.4139

mnist-m-b mnist-rc-awgn lr-0.2 0.9738 0.2319

mnist-awgn mnist-m-b lr-0.2 0.9703 0.9539

mnist-awgn mnist-rc-awgn lr-0.2 0.9704 0.9153

mnist-rc-awgn mnist-m-b lr-0.2 0.9500 0.9327

mnist-rc-awgn mnist-awgn lr-0.2 0.9513 0.9527

Table 4.4: Experiment with n-MNIST with different combinations

After range of experiment, we decided our optimization algorithm, learning rate, drop out
rate and number of neurons in the dense layer to start our experiment to classify the noisy-
MNIST and MNIST data. We tried out with all three dataset. The total size of dataset is
120,000 in which 96,000 are for training, 24,000 is for validation and 20,000 images is for test
data.

21

4.1 Classification Experiment on MNIST And n-MNIST

Datasets Train Accuracies Test Accuracies Epochs

mnist-awgn 0.9999 1.0 10

mnist-m-b 0.9994 0.9998 10

mnist-rc-awgn 1.0 1.0 10

Table 4.5: Classify good and bad MNIST images

The model loss is show in the figure 1

Figure 4.1: Training loss with
MNIST-awgn dataset

Figure 4.2: Training loss with Motion
Blur Dataset.

Figure 4.3: Training loss with AWGN Dataset

The images for training data are more than 60,000 and it more than enough to train the
model. We decrease the data size exponentially and determine the accuracy and it is evident

22

Dataset Size(training samples) Train Accuracies Test Accuracies Epochs

65540 0.9999 1.0 10

32770 1.0 1.0 10

16384 0.9999 1.0 10

8192 0.9998 1.0 10

4096 0.9979 0.9998 10

2048 0.9866 0.9917 10

1024 0.9639 0.9922 10

512 0.9043 0.9910 10

256 0.75 0.9891 10

128 0.6078 0.9898 10

64 0.7031 0.9824 10

32 0.76 0.7905 10

16 0.5625 0.6959 10

8 0.5205 0.6469 10

4 0.500 0.5022 10

Table 4.6: Experiment with different tranining samples

that we get a good accuracy when we have 1024 data size. We ran experiment 30 times with
each data size to get the average.

Figure 4.4: Model loss with 16384
training samples

Figure 4.5: Model loss with 8192
training samples.

23

Figure 4.6: Model loss with 4096
training samples

Figure 4.7: Model loss with 2048
training samples.

Figure 4.8: Model loss with 1024
training samples

Figure 4.9: Model loss with 512 train-
ing samples.

Figure 4.10: Model loss with 256
training samples

Figure 4.11: Model loss with 128
training samples.

24

Figure 4.12: Model loss with 64 train-
ing samples

Figure 4.13: Model loss with 32 train-
ing samples.

Figure 4.14: Model loss with 16 train-
ing samples

Figure 4.15: Model loss with 8 train-
ing samples.

Figure 4.16: Model loss with 4 training samples

From our training loss, we can see that the model will learn until we have 16 to 32 images
for training. The validation accuracy is slightly decreasing with the number of epochs but
with 8 images, the validation accuracy is increasing. We are trying to increase the accuracy
with training size 16 samples. Our test data is consistent through out the experiment. We

25

are testing on 20,000 images of test data. We perform these experiment 30 times to get the
average of test and training accuracy and how much our accuracy are deviated. The graph
can be shown in figure 4.17.On x-axis, 4(21),4(22),8(23) represents represents the data size
and with 16 training example we got the accuracy around 65%.

Figure 4.17: Test Accuracy graph

4.2 Experiment for Manual Parameter Optimization

As we mentioned earlier that there are two most widely used strategies for hyper-parameter
optimization manual search and grid search. We tried to find the parameters manually. The
results are shown in table 4.7. The problem with these strategy is the search space is very
small and it takes more time to find the parameter. We conduct the manual tuning which is
quite inefficient.

Dropout Convolutional filter No. of neurons Epochs test accuracy

0.1 100 28 10 0.78625

0.2 100 28 10 0.81515

0.3 100 28 10 0.5537

0.4 100 28 10 0.6509

0.5 100 28 10 0.74175

0.6 100 28 10 0.75695

0.7 100 28 10 0.62185

0.8 100 28 10 0.50555

0.9 100 28 10 0.52003

0.2 100 5 10 0.64385

0.2 100 10 10 0.7758

0.2 100 15 10 0.57075

0.2 100 20 10 0.62305

26

0.2 100 25 10 0.571

0.2 100 30 10 0.8212

0.2 100 35 10 0.50195

0.2 100 40 10 0.63065

0.2 100 45 10 0.58905

0.2 100 50 10 0.50135

0.2 100 55 10 0.8522

0.2 100 60 10 0.56735

0.2 100 65 10 6424

0.2 100 70 10 0.5068

0.2 100 75 10 0.60305

0.2 100 80 10 0.6347

0.2 100 85 10 0.7071

0.2 100 90 10 0.8655

0.2 100 95 10 0.63755

0.2 5 90 10 0.561

0.2 10 90 10 0.6446

0.2 15 90 10 0.50225

0.2 20 90 10 0.79795

0.2 25 90 10 0.5429

0.2 30 90 10 0.5731

0.2 35 90 10 0.52015

0.2 40 90 10 0.6211

0.2 45 90 10 0.7922

0.2 50 90 10 0.70565

0.2 55 90 10 0.51885

0.2 60 90 10 0.60065

0.2 65 90 10 0.78375

0.2 70 90 10 0.6428

0.2 75 90 10 0.86825

0.2 80 90 10 0.792

0.2 85 90 10 0.50415

0.2 90 90 10 0.5

0.2 95 90 10 0.7164

Table 4.7: Manual Search for Hyper-Parameters

Another strategy for hyper parameter search is GridSearch. The problem with this tech-
nique is that, it takes a lot of time. We try to optimize the drop out rate and number of
convolutional filters and it takes around 6 hours to complete that. This trick is not efficient.
This is available in scikit library.

27

4.2.1 Experiment using Hyper Heuristics Approach

In hyper heuristics approach, the experiment is conducted with training size from 4 to 512.
We run our algorithm thirty times on each data set size and took the average of the thirty best
run. We also record the training time with hyper heuristics optimization and with manual
search.

Table 4.8: Experiment with different training size using Hyper Heuristic Approach

Test Accuracy

Dataset Size(training samples) Without optimization With Optimization

512 0.9910 0.999

256 0.9891 0.999

128 0.9898 0.9988

64 0.9824 0.9911

32 0.7905 0.9165

16 0.6959 0.9068

8 0.6469 0.6872

4 0.5022 0.5211

It is evident from the test accuracy that the hyper heuristics approach is far better as compare
to other approach. We also record the time of our experiment. With little bit extra time we
get the huge improvement. It is evident from our timing diagram.

Figure 4.18: Time comparison

28

The experimental results are listed in table 4.6, 4.7 and 4.8. Each table represents the test
accuracy with different training size. Classification performance has been our primary focus
in the discovery and analysis of hyper-parameters. It is our goal to better the classification
accuracy with less training size. We trained convolutional neural network on only 16 and 32
of these images and find the suitable hyper parameter using hyper heuristics method which
result in increasing the test accuracy.

Figure 4.19: Test accuracy with and without optimization

Figure 4.19 shows the test accuracy of our classification task with different training examples.
There is significant difference in the accuracy with training examples 16 and 32.

To further verify the effectiveness of our hypothesis, we further conducted a student’s t test on
the test accuracy of training size 16 and 32 with and without hyper heuristics optimization.
The p-value suggest that the result is significant with the confidence level of 95%. This again
prove the significance of the result.

4.3 Classification With Imagene Dataset

We start training by fixing the parameter same as the last experimental setup. We note that
the model didn’t generalize well. As shown in 4.9, with ten epochs we didn’t get the suffiecient
accuray. We increase the epoch from 10 to 100.

Epochs Train Accuracy Test Accuracy

10 0.8099 58.12

100 0.9504 58.97

Table 4.9: Imagene data Experimental result

29

It is noted from the training accuracy with 100 epochs that our model fit too much because
the training loss is decreasing and validation loss is not decreasing after some epochs shown
in 4.21.

Figure 4.20: Training loss 10 epochs Figure 4.21: Training loss 100 epochs

4.3.1 Experiment using Hyper Heuristics Approach

We perform some experiment using hyper heuristics algorithm to find the best parameter and
get the best test accuracy.

Drop out Learning Rate Neurons Epochs Test Accuracy

0.020 0.291 50 5 0.6321

Table 4.10: Hyper Heuristic with Imagene Dataset

Using Hyper heuristic approach, the test accuracy have been increase a little. Hyper heuristcs
method successfully find some parameter that increase the test accuracy. The parameter range
used is same as before. This is one of the issue, this algorithm didn’t find the best accuracy
because those parameters range are strictly defined for MNIST dataset.

Due to time constraint, we didn’t able to perform large number of experiments on Imagene
dataset. Significant issues were encountered when we start working with Imagene dataset.
The main problem was overfitting where test accuracy were poor despite model achieve around
98%. As we downsample the images from 200x200 to 40x40, this could be an issue but this is
just a hypothesis and we cannot firmly conclude that. The architecture used in this experiment
is good for MNIST dataset and more deep architecture may increase the performance.

30

Chapter 5

Conclusions and Future Work

In this work, we investigated the hyper-heuristics based parameter optimization method to
improve image classification of Deep Neural networks. The method have been tested on well
known MNIST dataset. The conclusion to first question is that it is possible to differentiate
between good quality images and bad quality images without understanding the content.
The convolutional architecture with right number of parameter and suitable data set achieve
the good accuracy and generalize well. For our second question, we conclude that with the
decrease of datasize, the train and test accuracy also decreasing. To increase the accuracy,
it is required to tune parameter and find out the range of parameter which result in good
accuracy. Finding the parameter manually is hard task and it is inefficient. The conclusion
to our third question is that the Hyper-heuristics optimisation approach is valid which gives
good result even with the smallest dataset. Furthermore, the comparison result with MNIST
without optimisation and MNIST with optimisation were very encourage as hyper heuristic
method increase the accuracy upto 90% with 16 and 32 training size. Future work could
explore many Deep learning advances. The most obvious one is to do the training and doing
the same procedure on CIFAR-10. The more extension to this is to test the same hypothesis
on other benchmark dataset.

31

Appendix A

Testbed Configuration

Processor : Intel(R) Core(TM) i3-3227U CPU @ 1.90GHz

RAM: 4.00 GB (3.88 GB usable)

Operating System : Microsoft Windows 10 Education

System Type: 64-bit Operating System, x64-based processor

Python version: 3.5

Tensorflow Version: 1.0.0

Keras Version: 2.0.0

Anaconda Version: 4.3.17

32

References

[1] Michael A. Nielsen. Neural Networks and Deep Learning. Determination Press, 2015.
http://www.neuralnetworksanddeeplearnin.com.

[2] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[3] Mart́ın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig
Citro, Greg S Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, et al. Tensor-
flow: Large-scale machine learning on heterogeneous distributed systems. arXiv preprint
arXiv:1603.04467, 2016.

[4] Cheng-Lin Liu, Kazuki Nakashima, Hiroshi Sako, and Hiromichi Fujisawa. Handwrit-
ten digit recognition: benchmarking of state-of-the-art techniques. Pattern recognition,
36(10):2271–2285, 2003.

[5] Nasser R Sabar, Ayad Mashaan Turky, and Andy Song. Optimising deep belief networks
by hyper-heuristic approach. In CEC 2017-IEEE Congress on Evolutionary Computa-
tion, 2017.

[6] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look once:
Unified, real-time object detection. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 779–788, 2016.

[7] Shuiwang Ji, Wei Xu, Ming Yang, and Kai Yu. 3d convolutional neural networks for hu-
man action recognition. IEEE transactions on pattern analysis and machine intelligence,
35(1):221–231, 2013.

[8] Andrej Karpathy, George Toderici, Sanketh Shetty, Thomas Leung, Rahul Sukthankar,
and Li Fei-Fei. Large-scale video classification with convolutional neural networks. In
Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, pages
1725–1732, 2014.

[9] Karl Moritz Hermann, Tomas Kocisky, Edward Grefenstette, Lasse Espeholt, Will Kay,
Mustafa Suleyman, and Phil Blunsom. Teaching machines to read and comprehend. In
Advances in Neural Information Processing Systems, pages 1693–1701, 2015.

[10] Alex Graves. Generating sequences with recurrent neural networks. arXiv preprint
arXiv:1308.0850, 2013.

33

[11] Alex Graves, Abdel-rahman Mohamed, and Geoffrey Hinton. Speech recognition with
deep recurrent neural networks. In Acoustics, speech and signal processing (icassp), 2013
ieee international conference on, pages 6645–6649. IEEE, 2013.

[12] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van
Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc
Lanctot, et al. Mastering the game of go with deep neural networks and tree search.
Nature, 529(7587):484–489, 2016.

[13] Yaniv Taigman, Ming Yang, Marc’Aurelio Ranzato, and Lior Wolf. Deepface: Closing
the gap to human-level performance in face verification. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 1701–1708, 2014.

[14] Shuiwang Ji, Wei Xu, Ming Yang, and Kai Yu. 3d convolutional neural networks for hu-
man action recognition. IEEE transactions on pattern analysis and machine intelligence,
35(1):221–231, 2013.

[15] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with
deep convolutional neural networks. In Advances in neural information processing sys-
tems, pages 1097–1105, 2012.

[16] Dan Ciregan, Ueli Meier, and Jürgen Schmidhuber. Multi-column deep neural networks
for image classification. In Computer Vision and Pattern Recognition (CVPR), 2012
IEEE Conference on, pages 3642–3649. IEEE, 2012.

[17] Matthew D Zeiler and Rob Fergus. Visualizing and understanding convolutional net-
works. In European conference on computer vision, pages 818–833. Springer, 2014.

[18] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper
with convolutions. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 1–9, 2015.

[19] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature,
521(7553):436–444, 2015.

[20] Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltz-
mann machines. In Proceedings of the 27th international conference on machine learning
(ICML-10), pages 807–814, 2010.

[21] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016.
http://www.deeplearningbook.org.

[22] Nitish Srivastava, Geoffrey E Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. Dropout: a simple way to prevent neural networks from overfitting.
Journal of Machine Learning Research, 15(1):1929–1958, 2014.

[23] Thien Huu Nguyen and Ralph Grishman. Relation extraction: Perspective from convo-
lutional neural networks. In Proceedings of NAACL-HLT, pages 39–48, 2015.

34

[24] Mart́ın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig
Citro, Greg S Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, et al. Tensor-
flow: Large-scale machine learning on heterogeneous distributed systems. arXiv preprint
arXiv:1603.04467, 2016.

[25] Saikat Basu, Manohar Karki, Sangram Ganguly, Robert DiBiano, Supratik Mukhopad-
hyay, Shreekant Gayaka, Rajgopal Kannan, and Ramakrishna Nemani. Learning sparse
feature representations using probabilistic quadtrees and deep belief nets. Neural Pro-
cessing Letters, pages 1–13, 2015.

[26] Qinying Xu, Daryl D’Souza, and Vic Ciesielski. Evolving images for entertainment. In
Proceedings of the 4th Australasian conference on Interactive entertainment, page 26.
RMIT University, 2007.

[27] Allan Campbell, Vic Ciesielksi, and A Kai Qin. Feature discovery by deep learning for
aesthetic analysis of evolved abstract images. In International Conference on Evolution-
ary and Biologically Inspired Music and Art, pages 27–38. Springer, 2015.

[28] Edmund K Burke, Matthew Hyde, Graham Kendall, Gabriela Ochoa, Ender Özcan,
and John R Woodward. A classification of hyper-heuristic approaches. In Handbook of
metaheuristics, pages 449–468. Springer, 2010.

[29] Nasser R Sabar and Graham Kendall. Population based monte carlo tree search hyper-
heuristic for combinatorial optimization problems. Information Sciences, 314:225–239,
2015.

[30] Nasser R Sabar, Xiuzhen Jenny Zhang, and Andy Song. A math-hyper-heuristic approach
for large-scale vehicle routing problems with time windows. In Evolutionary Computation
(CEC), 2015 IEEE Congress on, pages 830–837. IEEE, 2015.

[31] Nasser R Sabar and Masri Ayob. Examination timetabling using scatter search hyper-
heuristic. In Data Mining and Optimization, 2009. DMO’09. 2nd Conference on, pages
127–131. IEEE, 2009.

[32] Nasser R Sabar, Masri Ayob, Graham Kendall, and Rong Qu. Grammatical evolution
hyper-heuristic for combinatorial optimization problems. strategies, 3:4, 2012.

[33] Ritendra Datta, Dhiraj Joshi, Jia Li, and James Wang. Studying aesthetics in photo-
graphic images using a computational approach. Computer Vision–ECCV 2006, pages
288–301, 2006.

[34] Vic Ciesielski, Perry Barile, and Karen Trist. Finding image features associated with
high aesthetic value by machine learning. In International Conference on Evolutionary
and Biologically Inspired Music and Art, pages 47–58. Springer, 2013.

[35] Yan Ke, Xiaoou Tang, and Feng Jing. The design of high-level features for photo quality
assessment. In Computer Vision and Pattern Recognition, 2006 IEEE Computer Society
Conference on, volume 1, pages 419–426. IEEE, 2006.

[36] Kuo-Yen Lo, Keng-Hao Liu, and Chu-Song Chen. Assessment of photo aesthetics with
efficiency. In Pattern Recognition (ICPR), 2012 21st International Conference on, pages
2186–2189. IEEE, 2012.

35

[37] Luca Marchesotti, Florent Perronnin, Diane Larlus, and Gabriela Csurka. Assessing the
aesthetic quality of photographs using generic image descriptors. In Computer Vision
(ICCV), 2011 IEEE International Conference on, pages 1784–1791. IEEE, 2011.

[38] Wei Luo, Xiaogang Wang, and Xiaoou Tang. Content-based photo quality assessment.
In Computer Vision (ICCV), 2011 IEEE International Conference on, pages 2206–2213.
IEEE, 2011.

[39] Naila Murray, Luca Marchesotti, and Florent Perronnin. Ava: A large-scale database for
aesthetic visual analysis. In Computer Vision and Pattern Recognition (CVPR), 2012
IEEE Conference on, pages 2408–2415. IEEE, 2012.

[40] Allan Campbell, Vic Ciesielski, and Karen Trist. A self organizing map based method
for understanding features associated with high aesthetic value evolved abstract images.
In Evolutionary Computation (CEC), 2014 IEEE Congress on, pages 2274–2281. IEEE,
2014.

[41] Philip Galanter. Computational aesthetic evaluation: Past and future. In Computers
and Creativity, pages 255–293. Springer, 2012.

[42] Penousal Machado and Amı́lcar Cardoso. Generation and evaluation of artworks. In Proc.
of the 1st European Workshop on Cognitive Modeling, CM’96, pages 96–39. Citeseer,
2010.

[43] Xinmei Tian, Zhe Dong, Kuiyuan Yang, and Tao Mei. Query-dependent aesthetic model
with deep learning for photo quality assessment. IEEE Transactions on Multimedia,
17(11):2035–2048, 2015.

[44] Ilya Loshchilov and Frank Hutter. Cma-es for hyperparameter optimization of deep
neural networks. arXiv preprint arXiv:1604.07269, 2016.

[45] Sebastian Ruder. An overview of gradient descent optimization algorithms. arXiv
preprint arXiv:1609.04747, 2016.

36

